Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
2. Source Coding

2.3 Source Extension:

Introduction to Source Extension, Memoryless Source and Independent Symbols

Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
2. Source Coding

2.3 Source Extension:

Calculating the probabilities for Blocks of Source Symbols, Second- and Third-Order Extensions, L_{n}

[Ex.2.40]

Huffman Coding: Source Extension

a_{1}	a_{2}	a_{3}
Y	Y	Y
Y	Y	N
Y	N	Y
Y	N	N
N	Y	Y
N	Y	N
N	N	Y
N	N	N

Kronecker Product

- An operation on two matrices of arbitrary size
- Named after German mathematician Leopold Kronecker.
- If \mathbf{A} is an m-by- n matrix and \mathbf{B} is a $p-b y-q$ matrix, then the Kronecker product $\mathbf{A} \otimes \mathbf{B}$ is the $m p-b y-n q$ matrix

```
Use \(\operatorname{kron}(A, B)\) in MATLAB.
```

$$
\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & \ddots & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right] .
$$

- Example

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \otimes\left[\begin{array}{ll}
0 & 5 \\
6 & 7
\end{array}\right]=\left[\begin{array}{cccc}
1 \cdot 0 & 1 \cdot 5 & 2 \cdot 0 & 2 \cdot 5 \\
1 \cdot 6 & 1 \cdot 7 & 2 \cdot 6 & 2 \cdot 7 \\
3 \cdot 0 & 3 \cdot 5 & 4 \cdot 0 & 4 \cdot 5 \\
3 \cdot 6 & 3 \cdot 7 & 4 \cdot 6 & 4 \cdot 7
\end{array}\right]=\left[\begin{array}{cccc}
0 & 5 & 0 & 10 \\
6 & 7 & 12 & 14 \\
0 & 15 & 0 & 20 \\
18 & 21 & 24 & 28
\end{array}\right] .
$$

Kronecker Product

```
>> p = [0.9 0.1]
p =
    0.9000 0.1000
>> p2 = kron(p,p)
p2 =
    0.8100 0.0900
>> p3 = kron(p2,p)
p3 =
Columns 1 through 7
```

0.7290
0.0810
0.0810
0.0090
0.0810
0.0090
0.0090

``` Column 8
0.0010
```


[Ex.2.40]

Huffman Coding: Source Extension

[Ex.2.40]

Huffman Coding: Source Extension

Summary: Source Extension

$\begin{array}{l}\text { Source Coding w/o } \\ \text { Extension }\end{array}$ Source Coding with Extension $\left.\begin{array}{l}\text { The encoder operates on } \\ \text { individual source symbols. }\end{array} \begin{array}{l}\text { The encoder operates on blocks of } \\ \text { consecutive source symbols. } \\ \text { [Defn 2.39] } \boldsymbol{n} \text {-th extension coding: } \\ 1 \text { block }=n \text { successive source symbols }\end{array}\right\}$

Summary: Source Extension

- $L_{n}=$ expected (average) codeword length per source symbol when Huffman coding is used with n-th extension
- $\lim _{n \rightarrow \infty} L_{n}=H(X)$

[Ex.2.40]

Huffman Coding: Source Extension

Summary: Source Extension

- The encoder operates on the blocks rather than on individual symbols.
- [Defn 2.39] \boldsymbol{n}-th extension coding:

1 block $=n$ successive source symbols

- $L_{n}=$ expected (average) codeword length per source symbol when Huffman coding is used with n-th extension
- $H(X) \leq L_{n}<H(X)+\frac{1}{n}$
- $\lim _{n \rightarrow \infty} L_{n}=H(X)$

Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th
 2. Source Coding

Random Vectors

Multiple Random Variables

- Consider a collection of n random variables

$$
X_{1}, X_{2}, \ldots, X_{n}
$$

- Compact notations: Random Vectors
- \boldsymbol{X}_{1}^{n}
$\overrightarrow{\boldsymbol{X}}=\left(\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ X_{i} \\ \vdots \\ X_{n}\end{array}\right)$
- $\underline{\boldsymbol{X}}=\left(X_{1}, X_{2}, \ldots, X_{i}, \ldots X_{n}\right)$

Vector Notation

- $\overrightarrow{\mathbf{V}}$: column vector

$\overrightarrow{0}, \underline{0}$: the zero vector (the all-zero vector)
 $\overrightarrow{1}, \underline{1}$: the one vector
 (the all-one vector)

- $\underline{\mathbf{r}}$: row vector

$$
\left(r_{1}, r_{2}, \ldots, r_{i}, \ldots r_{n}\right)
$$

dividual vectors.

- v_{i} and r_{i} refer to the $i^{\text {th }}$ elements inside the vectors $\overrightarrow{\mathbf{V}}$ and $\underline{\mathbf{r}}$, respectively.
- When we have a list of vectors, we use superscripts in parentheses as indices of vectors.
- $\overrightarrow{\mathbf{v}}^{(1)}, \overrightarrow{\mathbf{v}}^{(2)}, \ldots, \overrightarrow{\mathbf{v}}^{(M)}$ is a list of M column vectors
- $\underline{\mathbf{r}}^{(1)}, \underline{\mathbf{r}}^{(2)}, \ldots, \underline{\mathbf{r}}^{(M)}$ is a list of M row vectors
- $\overrightarrow{\mathbf{v}}^{(i)}$ and $\underline{\mathbf{r}}^{(i)}$ refer to the $i^{\text {th }}$ vectors in the corresponding lists.

Harpoon

- a long, heavy spear attached to a rope, used for killing large fish or whales

Harpoon

Joint pmf

$$
\underbrace{p_{X_{1}, X_{2}, \ldots, x_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}_{p_{\underline{\boldsymbol{X}}}(\underline{\boldsymbol{x}})}=\underbrace{P\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right]}_{P[\underline{\boldsymbol{X}}=\underline{\boldsymbol{x}}]}
$$

$$
p_{\underline{X}}(\underline{x})=P[\underline{X}=\underline{x}]
$$

Independence

n random variables $X_{1}, X_{2}, \ldots, X_{n}$
are independent if for any $x_{1}, x_{2}, \ldots, x_{n}$,
$p_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p_{X_{1}}\left(x_{1}\right) p_{X_{2}}\left(x_{2}\right) \cdots p_{X_{n}}\left(x_{n}\right)$
$p_{\underline{\boldsymbol{X}}}(\underline{\boldsymbol{x}})$
$\prod_{i} p_{X_{i}}\left(x_{i}\right)$

$$
p_{\underline{\boldsymbol{X}}}(\underline{\boldsymbol{x}})=\prod_{i} p_{X_{i}}\left(x_{i}\right)
$$

Independence

n random variables $X_{1}, X_{2}, \ldots, X_{n}$
are independent if for any $x_{1}, x_{2}, \ldots, x_{n}$,
$p_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p_{X_{1}}\left(x_{1}\right) p_{X_{2}}\left(x_{2}\right) \cdots p_{X_{n}}\left(x_{n}\right)$
$p_{X_{1}^{n}}\left(\boldsymbol{x}_{1}^{n}\right)$
$\prod_{i=1}^{n} p_{X_{i}}\left(x_{i}\right)$

$$
p_{X_{1}^{n}}\left(\boldsymbol{x}_{1}^{n}\right)=\prod_{i=1}^{n} p_{X_{i}}\left(x_{i}\right)
$$

Extension Coding

List Notation

$$
\begin{array}{c|c}
\text { List Notation } & \text { Vector Notation } \\
\hline p_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & p_{\underline{\boldsymbol{X}}}(\underline{\boldsymbol{x}}) \text { or } p_{\boldsymbol{X}_{1}^{n}}\left(\boldsymbol{x}_{1}^{n}\right) \\
\hline c\left(x_{1}, x_{2}, \ldots, x_{n}\right) & c(\underline{\boldsymbol{x}}) \text { or } c\left(\boldsymbol{x}_{1}^{n}\right) \\
\ell\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \ell(\underline{\boldsymbol{x}}) \text { or } \ell\left(\boldsymbol{x}_{1}^{n}\right) \\
\mathbb{E}\left[\ell\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right] & \mathbb{E}[\ell(\underline{\boldsymbol{X}})] \text { or } \mathbb{E}\left[\ell\left(\boldsymbol{X}_{1}^{n}\right)\right] \\
L_{n}=\frac{\mathbb{E}\left[\ell\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]}{n} & L_{n}=\frac{1}{n} \mathbb{E}[\ell(\underline{\boldsymbol{X}})] \text { or } \frac{1}{n} \mathbb{E}\left[\ell\left(\boldsymbol{X}_{1}^{n}\right)\right]
\end{array}
$$

